We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Fast Recovery Diode?

By G.W. Poulos
Updated May 16, 2024
Our promise to you
EasyTechJunkie is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At EasyTechJunkie, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A diode is a common electronic device with two leads; it allows an electrical signal to pass in one direction, but will block a signal that tries to pass in the other direction. In operation, a diode continuously switches back and forth between conducting in the desired direction and blocking in the undesired direction. When a diode switches, it takes a brief moment, called the recovery time, to recover and change from conducting to blocking. During the recovery time, a small amount of signal can pass in the wrong direction. A fast recovery diode is a diode designed to have as small of a recovery time as possible, so that the undesired signal does not disrupt high-power or high-frequency equipment.

Standard semiconductor diodes are made from two pieces of material, such as silicon. One piece is positively charge, called the anode, and the other is negatively charged, called the cathode. Such diodes are called PN junction diodes, after the two charged sections and the switching effect that takes place at the junction where the two pieces meet.

When an electrical current enters the cathode, it cannot pass through the negatively charged cathode of the diode, which shares the same electrical charge, and is blocked. A current entering through the anode, however, can pass through the positively charged anode and continue through the cathode and out of the other side of the diode and on to the rest of the circuit. In most applications, such as when converting an AC signal to DC, a diode switched between conducting and blocking regularly.

During the time that a diode is conducting, the current passing through the diode builds up a negative charge in the normally positive anode of the diode. When it then switches to its blocking mode, that built-up charge allows electrical current to flow through the diode in the reverse direction until the charge dissipates. The time it takes this charge to dissipate, and the diode to begin to block the signal fully, is called the diode’s recovery time.

For most applications, the recovery time of a standard diode, which is usually less than 100 milliseconds long, is not an issue. Likewise, the signal that passes through the diode during the recovery time is often too weak to be of concern. In certain high-speed, high-frequency or high-power applications, however, the recovery time of a diode can be of critical importance and require the use of a fast recovery diode.

Operationally, a fast recovery diode usually overcomes the long recovery time of a standard diode by using a metal segment in place of one of the semiconductor segments, such as in a Schottky diode. Another type of fast recovery diode, called a gold-doped diode, uses gold or platinum additives to increase the conductivity of one of the diode's segments. In practice, the use of metal instead of semiconductor provides for a more highly conductive diode. This higher conductivity allows the charge built up in the diode to dissipate at a much faster rate, usually in the tens of nanoseconds range, which greatly shortens the diode’s recovery time.

EasyTechJunkie is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.