We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Parity Drive?

By G. Wiesen
Updated May 16, 2024
Our promise to you
EasyTechJunkie is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At EasyTechJunkie, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A parity drive is a storage device used as part of a computer system that contains parity data for redundancy and backup purposes. This is commonly part of a Redundant Array of Independent Disks (RAID), in which one or more disk drives are connected together to act as a single system. When data is stored on these devices, parity information can be created for use later in case one of the disks fails. A parity drive is not necessarily part of all RAID setups, but it allows for simple and effective data recovery.

The basic function of a parity drive is to provide additional storage of "parity bits," which are pieces of data used to backup the main drives in a disk array. An array is a computer setup in which multiple disks, such as two or more hard drives, are connected together and used as a single storage system. Although a number of different methods are used for this, a RAID is among the most common forms. There are various types of RAIDS, and more complex "levels" often include the use of a parity drive to provide effective backup and redundancy of information.

A parity drive functions through the use of parity bits that are stored on it. The simplest example of how parity bits function is in a RAID or other system that uses three drives in total. Two of the drives would be used as the actual data storage disks, while the third would function as a parity drive. Whenever data is saved to the RAID, each piece of information is split in half, with one part going onto one drive and the other part onto the second.

Computer data consists of bits, which are binary pieces of data represented by either a one or a zero. Whenever information is stored on a system with a parity drive, one bit from each storage drive is added to the other. If the result is an even number, then a parity bit with a value of zero is saved to the parity device, while an odd result creates a value of one. This can then be used if one of the storage drives fails, to recreate the data that is missing in order to restore what was lost.

For example, a "1" on one device, and a "0" on the other, would generate a "1" to be stored on the parity drive, since this is an odd value when added together. If the storage drive with the "0" data on it becomes corrupted, it can be replaced with a new, blank disk. The system can then look at the existing data, find the remaining "1" in data storage, compare that to the "1" in the parity device, and recognize that a "0" needs to be recreated to restore the lost data. This is redundancy and allows an array to effectively recover data even if part of the original system is lost.

EasyTechJunkie is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.