We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Red Diode Laser?

By Mal Baxter
Updated May 16, 2024
Our promise to you
EasyTechJunkie is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At EasyTechJunkie, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A red diode laser is a solid state electronics component that produces an intense beam of visible light with wavelengths of 630 to 700 nanometers (nm) in the red portion of the visible spectrum. Light is generated by passing current across semiconducting material, which releases photons. Their light intensifies through rapid reflection between mirrors, excited by surrounding energized electrons, and the conical beam gets straightened by a collimating lens, a curved lens that aligns diode light rays into parallel lines aimed toward infinity. Laser diodes are used in common electronics equipment, consumer products, and laser light shows.

Red diode laser modules appear in numerous products and technologies. They perform precise measurements for rangefinders and read merchandise barcodes. The devices permit experimental spectrum analysis used in physics and medical experiments. Diodes are light-sensitive components employed in everything from security and defense technologies to pointers and disc players. Industries that use lighting design also have numerous creative uses for these eye-catching light sources.

Although similar to the technology that produces a light emitting diode (LED), a red diode laser is a true laser. While it is more difficult to produce a narrow line emission with a diode, compared with gas or crystal lasers, these components have a simpler design and manufacture by comparison. Beams are intensified by elongating cavity length; diodes can be stacked as well for multiplied output power. Parallel rays form a red light beam with intensity that varies according to its precise wavelength; beams closer to 630 nm appear five times brighter than those at 700 nm. Green lasers, by comparison, use 808 nm light, which is converted by a crystal to 1,064 nm and then squeezed down to 532 nm, producing an even brighter beam, competing with red lasers as a popular choice for consumer gadgets.

Replacing helium-neon lasers in supermarket scanners and hospital equipment, red diode laser components have become more common and cheap. Most function in the 3 to 5 milliwatt (mW) range, though higher-power diodes in the 10 mW range are available. Stacked laser diode bars can produce from several hundred to several thousand watts of power and can be very costly. In hospitals, these devices function in computerized tomography (CT) and magnetic resonance imaging (MRI) scanners and other equipment.

Laser energy output is not proportional to the strength of its visible beam. The brightness or coloring of a laser won't indicate its optical output power or potential burning hazards to the human eye. Any red diode laser with a collimating lens, higher listed output power, or wavelengths nearer the invisible infrared band presents greater hazard to eye safety. Imperfections can arise due to manufacturing processes or faulty components; all laser beams should be calibrated indirectly and never pointed into eyes. They also function as gun sighting beams, so public misuse can present other hazards.

EasyTechJunkie is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.