We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Software

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Dynamic Time Warping?

Andrew Kirmayer
By
Updated: May 16, 2024
References

Dynamic time warping (DTW) involves a method of calculation, called an algorithm, to compare sounds, video, and graphics that may be similar but samples of which may have subtle differences. The calculations typically formulate a linear representation of the sample, and measure the differences as a function of time. Different elements of a sample can be mapped on a grid to identify similarities, while commands for functions often use symbols to identify each variable. Speech recognition, for example, sometimes uses dynamic time warping to match words even if are spoken at different speeds or certain parts are pronounced differently.

Many speech recognition programs use dynamic time warping because people often speak at different rates. Certain vowel sounds may be annunciated differently depending on emotions or other factors. Some programs can recognize words spoken no matter who is speaking. For this reason, it is usually not effective to add up the distances in time intervals to compare sounds. With DTW, various time-specific points for each signal are analyzed; these distances are calculated on a grid which runs from bottom-left to top-right.

Similarities in the corresponding parts of two samples can be measured using the Levenshtein distance. Letters are used to represent the changes between one source and another. The solution to the algorithm typically is a larger number the more different the two samples are. This concept is often used for speech recognition as well as spell checking and analyzing genetic material.

In some measurements, frequency changes can offset the ability of dynamic time warping. Signals can be calculated in such a way that their form is used regardless of frequency. Modulated signals can pose a problem as well, but a grid that calculates distances between line segments instead of points can compensate.

Sequence alignment is generally mathematical and some computer programming skills are needed to fully understand it. Dynamic time warping algorithms depend on some basic conditions for realistically calculating the differences between audio or visual samples. Considering a sample as a path along a grid, the algorithm often follows rules, such as the path cannot turn back and that it is measured one step at a time. In addition to the bottom-left to top-right format, measurements are limited to locations close to a diagonal line. Values that are too steep or shallow are often disregarded because they can cause errors in the final measurement.

EasyTechJunkie is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Andrew Kirmayer
By Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various industries and disciplines. With a degree in Creative Writing, he is skilled at writing compelling articles, blogs, press releases, website content, web copy, and more, all with the goal of making the web a more informative and engaging place for all audiences.
Discussion Comments
Andrew Kirmayer
Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various...
Learn more
Share
https://www.easytechjunkie.com/what-is-dynamic-time-warping.htm
EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.