We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What are Common Transistor Applications?

By Kurt Inman
Updated May 16, 2024
Our promise to you
EasyTechJunkie is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At EasyTechJunkie, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Common transistor applications include digital and analog switches, signal amplifiers, power regulators and equipment controllers. Transistors are also the building blocks of integrated circuits and most modern electronics. Microprocessors often include more than a billion of them in each chip. Transistors are used in almost everything, from stoves to computers and pacemakers to aircraft.

The first transistors were produced in the late 1940s as semiconductor replacements for vacuum tubes. Early transistor applications included telephone equipment, radios and hearing aids. Room-sized computers were re-designed to use transistors, reducing their size and over-heating problems. Compared to tubes, transistors are small, cheap and lightweight—they're also durable and insensitive to vibration or shock. With no warm-up time, a low operating voltage and a long life span, the transistor quickly replaced most tube technology.

Increasing portability led to many new transistor applications in the 1950s and 1960s. Calculators, televisions and megaphones became smaller and more affordable; some of these were not even possible until the transistor was invented. Home stereos and amateur radio transmitters also became more accessible. The military used the transistor's high-power radio frequency (RF) abilities in radar and hand-held two-way radios. As the technology improved, some computer makers offered all-transistor models that no longer filled a whole room.

In the early 1960s, the integrated circuit (IC) was created, combining hundreds of interconnected transistors on a small chip. Soon, ICs held thousands of low-power transistors, making computers and consumer electronics very portable. Many discrete transistor applications remain for medium- and high-power devices, however. The material size and heat dissipation needed for greater current and voltage simply require a larger device. Most audio amplifiers, switching power supplies and motor controllers use individual power transistors, for example.

Many more power transistor applications exist, including vehicle ignitions, control systems and accessories. Medical devices, industrial machine controls and navigational equipment all rely on transistor characteristics. Power inverters for running household air-conditioning devices from direct current (DC) car batteries utilize high-current transistors. Some applications may also include digital, analog or mixed-signal ICs along with power transistors. Even medium-power circuits like coil and display drivers often use discrete transistors or a small transistor array.

Special-purpose transistor applications also utilize individual devices. Mobile phones and microwave systems include transistors capable of frequencies up to hundreds of Gigahertz. Radiation-hardened transistors are usually used in satellites and other aerospace applications. Extremely sensitive Darlington transistor pairs are often found in touch- and light-sensing devices. As part of an optoisolator, a phototransistor can also electrically isolate one circuit from another while still controlling it.

Nanotechnology and organic materials are introducing new types of transistors. More than a billion discrete transistors are produced every year as well. With around a billion in each microprocessor manufactured, transistor applications seem almost endless.

EasyTechJunkie is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By Glasis — On Feb 09, 2014
The hunger for more and more electronics causes a pool of waste electronics. Many of these electronics wind up in trash bins and later in landfills. These pieces of technology sometimes have dangerous chemicals and through leakage can wind up in ground water.

Some countries receive these piles of old and outdated electronics, taking on the burden of toxic exposure to their people for the money some countries are willing to pay to be rid of the waste electronics.

With our modern society changing cell phones, televisions and computers as fast as we can build the next years model, we must be mindful of the waste.

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.

EasyTechJunkie, in your inbox

Our latest articles, guides, and more, delivered daily.