Internet
Fact-checked

At EasyTechJunkie, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

Learn more...

What is a Quantum Computer?

A quantum computer is a marvel of modern science, harnessing the peculiar principles of quantum mechanics to process information in ways traditional computers can't match. By exploiting quantum bits, or qubits, it performs complex calculations at incredible speeds, potentially revolutionizing fields from cryptography to drug discovery. Intrigued? Discover how quantum computing might soon transform our digital world.
Michael Anissimov
Michael Anissimov
Michael Anissimov
Michael Anissimov

A quantum computer is any device that exploits quantum mechanical phenomena to run algorithms. Because quantum computers have fundamentally different computational properties than conventional computers, data held in quantum computers is referred to as qubits rather than bits. In conventional computers data is represented by microscopic grooves on a hard disk. In a quantum computer, data is represented by the quantum properties of a given molecule or set of molecules.

Instead of performing computations by retrieving data from a hard disk and processing it using an integrated circuit filled with logic gates, quantum computers process data by bombarding the information-containing molecule with short pulses of radiation. Each bombardment cycle represents an algorithmic operation on the data contained within the molecule. When the algorithm terminates, the quantum state of the molecule is measured, a process which itself biases the end result. This is due to the fundamentally uncertain nature of quantum mechanics.

Man holding computer
Man holding computer

To circumvent this difficulty, quantum computing algorithms are run multiple times and the weighted average of the output asymptotically approaches the correct answer. Because quantum mechanical phenomena are inherently probabilistic rather than deterministic, a well-defined answer on the first try is not possible.

Quantum computers possess certain capabilities classical computers lack. Quantum computing allows the quick factorization of large numbers (an explicit threat to conventional cryptographical techniques), the more accurate simulation of quantum phenomena, and very efficient database search.

For any search space of size n nodes, where each node represents a possible solution to a problem, there is only one possible solution, and each node must be checked individually for properties that correspond to a correct solution, quantum computing offers a fantastic speedup. In conventional computers, the average search time is the length of time it takes to check each node times the number of nodes (n) divided by two (it's probable that the solution will be found about halfway through the search). In quantum computers, the average search time is the length of time it takes to check each node times the square root of n. This confers a huge advantage which only becomes more impressive when we are considering larger problems.

It is not yet possible to conceive of all the applications of mature quantum computers. The largest number of qubits ever contained within one quantum computing system is 7. As quantum computing research continues rapidly on many millions of dollars in funding, it will only be a matter of time until a critical breakthrough occurs and impressive applications are invented.

Michael Anissimov
Michael Anissimov

Michael is a longtime EasyTechJunkie contributor who specializes in topics relating to paleontology, physics, biology, astronomy, chemistry, and futurism. In addition to being an avid blogger, Michael is particularly passionate about stem cell research, regenerative medicine, and life extension therapies. He has also worked for the Methuselah Foundation, the Singularity Institute for Artificial Intelligence, and the Lifeboat Foundation.

Learn more...
Michael Anissimov
Michael Anissimov

Michael is a longtime EasyTechJunkie contributor who specializes in topics relating to paleontology, physics, biology, astronomy, chemistry, and futurism. In addition to being an avid blogger, Michael is particularly passionate about stem cell research, regenerative medicine, and life extension therapies. He has also worked for the Methuselah Foundation, the Singularity Institute for Artificial Intelligence, and the Lifeboat Foundation.

Learn more...

You might also Like

Discussion Comments

anon27505

does anyone have anymore information on this subject?

Post your comments
Login:
Forgot password?
Register:
    • Man holding computer
      Man holding computer