What Is the Role of Nanotechnology in Computers?

Rebecca Mecomber

Nanotechnology in computers provides the need for faster running computer processes at cooler temperatures than traditional, transistor-based computer components. In traditional computing, transistors have used silicon components as an affordable and easily manufactured method to provide smaller and faster computers and electronic gadgets, such as netbooks, smartphones and personal assistant devices. Such powerful gadgets at so small a size produce too much heat, however, reducing the effectiveness, performance and longevity of the silicon components. Nanotechnology in computing solves the heat dilemma by providing improved processor power at cooler temperatures and lighter weights.

Nanotechnology is used to make small computing devices such as smartphones.
Nanotechnology is used to make small computing devices such as smartphones.

Nanotechnology in computers makes use of nanomaterials, tiny molecule-sized machines that process information similarly to the intricate and complex cells in a living organism. Similar to cells, nanomaterials exist on a microscopic level, one nanometer measuring one billionth of a meter, or 1/50,000 the thickness of a human hair. Nanotechnology in computing therefore operates on a minuscule level. Computer manufacturers create long, microscopic strands of carbon atoms, called carbon nanotubes, into tiny transistors that provide twice the processing power of silicon chips, while generating much less heat and lighter components. Additionally, nanotechnology applications offer more efficient performance, thus conserving power and increasing battery life for smaller, portable electronic devices.

Nanotechnology may eventually replace the hard drive disk.
Nanotechnology may eventually replace the hard drive disk.

The drive for more powerful computers with larger memory at lighter weights and cooler temperatures is responsible for the development of nanotechnology in computers. Besides greater processing power, nanotechnology in computers is providing advanced means of memory storage. The "nanodot," with its ability to condense vast amounts of data in a closely-packed compartment, may eventually replace the hard drive disk. Nanomaterials are generally more expensive than silicon materials, but the rise in demand outweighs the economic concern.

With the development of the transistor after World War II, consumer electronics exploded in popularity. Within four decades, the personal computer was born. As a bulky desktop appliance, there was no immediate need for portability in computers. Fans inside the computer housing, a necessary ingredient to keep transistors and other computer parts cool, gobbled up precious space. Yet since these first computers were stationary, manufacturers saw no real need to shrink the size of the machines.

The development of the cell phone and small computer devices created a need for smarter, more efficient means for carrying out computing processes. The silicon chip answered the call for faster computing. As devices became smaller and consumers requested more powerful technology, the heat produced from silicon components overwhelmed the electronic devices. Computer science developed nanotechnology, or nanotech, to accommodate the need for smaller devices operating at cooler temperatures and faster speeds.

The demand for smaller devices challenged chip engineers and manufacturers to design high-powered chips in smaller packages.
The demand for smaller devices challenged chip engineers and manufacturers to design high-powered chips in smaller packages.

You might also Like

Discussion Comments


@Mor - I wonder where the limit is? I'm always blown away by how much data can be stored in such a tiny space now. I mean, you can practically put an entire library in an average desktop. I think, sometimes, that we might run out of data before we run out of the space to store it.


@pastanaga - You have to remember that the goal of speeding up computers and making them smaller and more powerful is so that the benefits of that will translate into better games and software and faster internet connections.

You might not be directly taking advantage of the capacity of your computer in a creative way (although a lot of people do) but the software you take for granted now wouldn't work on a less powerful computer.

I saw a film recently where they speculated that in the near future, people would be able to interact with holographic games as though they were actually walking through fantasy landscapes. At the moment, I'm sure it would take a roomful of equipment to make something like that happen. Nanotechnology is going to eventually distill that into a much smaller space.


I'm always amazed when people point out how far computers have come in only a few decades. One of my favorite comparisons is one that measures an average scientific calculator against the computer they used in one of the space shuttles. The calculator, a tool that the average high school uses today is several times more powerful.

I do have to question at what point the average consumer will actually be able to make use of such power though. I mean, I'm sure my computer is capable of doing incredible feats of calculation, but I mostly use it to play computer games and surf the internet.

Post your comments
Forgot password?